Determination du diagramme de phases du système docosane $(n-C_{22})$ -tétracosane $(n-C_{24})$: variation de l'enthalpie des mélanges en fonction de la température ¹

Z. Achour, P. Barbillon, M. Bouroukba et M. Dirand

Ecole Nationale Supérieure des Industries Chimiques, Institut National Polytechnique de Lorraine, Laboratoire de Thermodynamique Chimique et Appliquée, U.R.A. C.N.R.S. 1108, B.P. 451, 54001 Nancy Cedex (France)

(Reçu le 23 septembre 1991)

Résumé

Le système binaire des deux *n*-paraffines, docosane $(n-C_{22})$ -tétracosane $(n-C_{24})$, est étudié.

L'utilisation conjointe des techniques d'analyse thermique différentielle et radiocristallographiqe permet d'établir le diagramme de phases de ce système binaire.

Les analyses enthalpimétriques différentielles donnent la variation de l'enthalpie de dix huit mélanges binaires en fonction de la température de 260 K à 340 K.

Abstract

The binary system, n-docosane-n-tetracosane, has been studied. The solid-liquid equilibrium diagram is established using X-ray and differential thermal analysis results. The enthalpy variation in temperature is determined for eighteen compositions between 260 and 340 K.

INTRODUCTION

Les dépôts qui se forment dans les gazoles lors de baisses sensibles de température, sont constitués principalement de solutions solides de n-

Correspondent: M. Dirand, Ecole Nationale Supérieure des Industries Chimiques, Institut National Polytechnique de Lorraine, Laboratoire de Thermodynamique Chimique et Appliquée, U.R.A. C.N.R.S. 1108, B.P. 451, 54001 Nancy Cedex, France.

¹ This paper was presented during the 22nd annual meeting of the French Association of Calorimetry and Thermal Analysis (AFCAT) at Paris-XI-Châtenay-Malabry (27-29 May 1991).

paraffines dont le nombre de carbone est supérieur à 18. Ces dépôts gênent l'écoulement et la filtrabilité des produits. Pour résoudre ce type de problème, les industriels utilisent des solutions empiriques. L'établissement d'un modèle théorique permettant le calcul du point de trouble des mélanges complexes de *n*-paraffines dans les gazoles, serait d'un apport considérable.

Dans la continuité des travaux effectués au sein de notre laboratoire [1-5], sur l'étude des équilibres liquide-solide des *n*-paraffines et de leurs mélanges, indispensable à l'obtention d'un tel modèle, nous présentons les résultats obtenus respectivement par enthalpimétrie différentielle et par analyse radiocristallographique sur différents mélanges binaires docosane-tétracosane $(n-C_{22}/n-C_{24})$.

Dans ces mélanges, Hasnaoui [4] a mis en évidence, outre les deux solutions solides primaires de structure triclinique βT_1 (*n*-C₂₂) et βT_2 (*n*-C₂₄), trois solutions solides intermédiaires, notées β'_1 , β'' et β'_2 . Ces observations indiquent que le diagramme de phases relatif à ce système est plus complexe que celui proposé par Mazee [6].

TECHNIQUES EXPERIMENTALES

Généralités

L'analyse enthalpimétrique différentielle est effectuée à l'aide d'un calorimètre DSC111 Setaram à flux thermique de type Tian Calvet. Un dispositif de refroidissement, couplé au calorimètre, permet de travailler à basse température. Les analyses structurales sont réalisées en utilisant deux techniques basées sur la diffraction des rayons-X:

(1) une chambre photographique Guinier de Wolff 4 Nonius qui permet d'évaluer les structures des différents mélanges docosane-tétracosane à la température ambiante de 21°C;

Fig. 1. Profil de la température et du signal calorimétrique.

Titre molaire en tétracosane	Masse de docosane (g)	Masse de tétracosane (g)	Masse molaire moyenne (g)
2,05	0,077650	0,001770	311,1799
3,95	0,086300	0,003865	311,7122
7,97	0,081350	0,007685	312,8422
13,01	0,077510	0,012640	314,2554
16,95	0,089270	0,019865	315,3605
19,95	0,070115	0,019055	316,2027
24,97	0,068335	0,024790	317,6091
28,08	0,063230	0,026910	318,4814
35,06	0,054905	0,032320	320,4411
38,02	0,505208	0,034835	321,2719
40,04	0,049705	0,036195	321,839
44,95	0,049840	0,039275	322,3748
48,00	0,045190	0,045480	324,0709
59,83	0,033585	0,054540	327,3899
74,97	0,029035	0,068365	331,6370
80,06	0,015685	0,068670	333,0655
89,79	0,008300	0,079595	335,795
94,91	0,004360	0,088720	337,2323

Compositions des mélanges n-docosane-n-tétracosane

TABLEAU 2

Variation de l'enthalpie en fonction de la température du mélange à 2,05% molaire en $n\text{-}\mathrm{C}_{24}$

T	$H^{\circ}(x,T)$	Phase	T	$H^{\circ}(x,T)$	Phase
(K)	$(J \text{ mol}^{-1})$	stable	(K)	$(J mol^{-1})$	stable
		1			:
260,0	0		313,0	50426	
265,0	2648		313,5	53880	
270,0	5373		314,0	58721	D.
275,0	7785		314,5	63647	RI
280,0	10479		315,0	66590	, DII
285,0	13321	β_{11}	315,5		
290,0	15840		315,9 ^a	72199	¥
295,0	18443		316,0	90257	
300,0	21416		316,5	108737	
305,0	24893		317,0	109110	
310,0	29261		317,3 ^a		
310,5	30099	1	317,5		ľ
310,9 ª			320,0	1110 2 0	Ī
311,0	31637		325,0	114727	
311,5	35371		329,9	118489	
311,8 ª	41608		334,9	122254	
312,0	45109	Ĩ	339,9	126033	*
312,5	47825	β			

(2) un diffractomètre CGR muni d'un dispositif de chauffage et de régulation qui permet de suivre l'évolution des structures de chaque mélange en fonction de la température.

Nous travaillons avec le rayonnement K α du cuivre ($\lambda K \alpha_{Cu} = 0,154184$ nm), sous une tension de 50 kV et une intensité de 10 mA.

Principe des mesures enthalpimétriques en fonction de la température des mélanges docosane-tétracosane

Les mesures de variation d'enthalpie en fonction de la température sont obtenues à l'aide d'une programmation discontinue, qui correspond à une montée linéaire ΔT entre deux paliers isothermes T_1 et T_2 (Fig. 1):

Le temps de montée en température t_m est fixé à 180 s.

La durée des paliers t_p est fonction d'un test automatique de retour à la ligne de base, que nous avons mis au point dans un logiciel de pilotage du calorimètre par ordinateur.

TABLEAU 3

Variation de l'enthalpie en fonction de la température du mélange à 3,95% molaire en $n-C_{24}$

T	$H^{\circ}(x,T)$	Phase	T	$H^{\circ}(x,T)$	Phase
(K)	$(J \text{ mol}^{-1})$	stable	(K)	$(J mol^{-1})$	stable
		<u>۴</u>			<u>۴</u>
260,0	0	l l	307,5 ^b	42660	
265,0	2698		308,0	43440	ŔI
270,0	5321		310,0	47640	
275,0	8220		315,0	61018	α-ŘII
280,0	11222		315,5 ª	63262	<u> </u>
285,0	14035		316,0	67513	
290,0	17114	$\beta T1 + \beta'1$	316,5	80026	
295,0	20415		317,0	107747	
300,0	24033		317,5	108117	
304,0	27640		317,7 ^a		
304,1 ^a		Ĺ	318,0	108498	ſ
304,5	29499		320,0	109909	
305,0	37918		324,9	113678	L
305,5 °	39774		329,9	117532	
306,0	40477	1	334,9	121337	
306,5	41187	β	339,9	125044	¥
307,0	41921	1		_	

^a Températures de début et de fin de transition et de fusion obtenues à partir du tracé $H^{\circ}(x, T)$ en fonction de T.

^b Température de transition $\beta \rightarrow RI$ obtenue à partir du tracé C_p en fonction de T.

Variation de l'enthalpie en fonction de la température du mélange à 7,97% molaire en $n-C_{24}$

T	$H^{\circ}(x,T)$	Phase	T	$H^{\circ}(x,T)$	Phase
(K)	$(J \text{ mol}^{-1})$	stable	(K)	$(J \text{ mol}^{-1})$	stable
		ſ			*
260,0	0		304,5	39022	
265,0	2791	$\beta \Pi + \beta \Pi$	305,0	39684	÷
270,0	5501		310,0	47618	KI
275,0	8296		315,0	57550	:
280,0	10942		315,5	59273	: ~ • • • • •
285,0	13789		316,0	62235	
290,0	16809		316,4 ^a		*
295,0	20118		316,5	69297	
300,0 ^ь	23746	*	316,8 ^a		
302,3 °		β ′1	317,0	96307	
302,5	26537	<u>+</u>	320,0	107180	I.
303,0	29174		324,9	110966	Ĩ
303,5	37540		329,9	114687	
303,6 ª		+	334,9	118503	l
304,0	38344	β	339,9	122256	÷

^a Températures de début et de fin de transition et de fusion obtenues à partir du tracé $H^{\circ}(x, T)$ en fonction de T.

^b Température correspondant aux limites entre les domaines de phases déterminées par analyse radiocristallographiques.

TABLEAU 5

Variation de l'enthalpie en fonction de la température du mélange à 13,01% molaire en $n-C_{24}$

T	$H^{\circ}(x,T)$	Phase	T	$H^{\circ}(x,T)$	Phase
(K)	$(J \text{ mol}^{-1})$	stable	(K)	$J \text{ mol}^{-1}$	stable
		↑			:
260,0	0		305,0	40085	:
265,0	2655		310,0	47741	ŔI
270,0	5675		315,0	56566	
275,0	8613	β ['] 1	317,0	76332	α-ŘII
280,0	11371	1	317,1 ª		_
285,0	14569		317,5	104694	
290,0	17588		318,0 ^a	105208	
295,0	20868		318,5	105602	l l
300,0	24643		319,0	105975	
302,0	27362		319,5	106335	<u>]</u>
302,1 ^a		Ţ	320,0	106712	Ļ
302,5	36456		325,0	110411	
303,0 ª	37345		329,9	114054	
303,5	38089	Â	334,9	117773	
304,0	38733	:	339,9	121509	t
304,5	39402		r		

Variation de l'enthalpie en fonction de la température du mélange à 16,95% molaire en $n-C_{24}$

T	$H^{\circ}(x,T)$	Phase	T	$H^{\circ}(x,T)$	Phase
(K)	$(J \text{ mol}^{-1})$	stable	(K)	$(J \text{ mol}^{-1})$	stable
		Ŷ			· · · · · · · · · · · · · · · · · · ·
260,0	0		305,5	41210	
265,0	2496	,	310,0	47990	RI
270,0	5365		313,5	53593	
275,0	8359	β'1	314,0 ^b	54440	
280,0	11420		314,5	55250	1
285,0	14704		315,0	56111	
290,0	17917		315,5	57240	α-RII
295,0	21259		316,0	58804	
300,0	25289		316,5	61415	
300,5	25804		316,7 °		
301,0	26504		317,0	67373	
301,3 ^a		L	317,5	87503	
301,5	28186	- <u></u> -	318,0	105540	
302,0	35700		318,3 ^a		
302,1 ^a			318,5	105915	Ţ
302,5	37357	·····	320,0	107069	Ļ
303,0	37975	l	325,0	110812	
303,5	38618	$\dot{\boldsymbol{\beta}}$	329,9	114546	
304,0	39258	1	334,9	118280	[
304,5	39898		339,9	122194	Ļ
305,0 ^ь	40546	Ļ			

^a Températures de début et de fin de transition et de fusion obtenues à partir du tracé $H^{\circ}(x, T)$ en fonction de T.

^b Températures respectives des transitions $\beta \rightarrow RI$ et $RI \rightarrow \alpha$ -RII obtenues à partir du tracé C_p en fonction de T.

Fig. 2. Courbe de variation d'enthalpie en fonction de la température pour le mélange à 38,02% molaire en n-C₂₄.

L'intégration numérique du signal calorimétrique par la méthode des trapèzes, pour chaque saut de température, permet de calculer la différence de chaleur $Q_{\rm T}$ échangée entre l'enceinte calorimétrique et les deux cellules contenant respectivement la référence et l'échantillon.

La valeur Q_T mesurée entre T_1 et T_2 est la résultante de plusieurs effets thermiques, que l'on peut séparer en deux termes

$$Q_{\rm T} = Q_{\rm D} + Q_{\rm E}$$

 $Q_{\rm D}$: effet thermique dû à la dissymétrie entre les deux cellules du calorimètre et à la différence de capacité calorifique entre les creusets vides référence et échantillon. $Q_{\rm E}$: variation d'enthalpie de l'échantillon lors du saut de température ΔT entre T_1 et T_2

$$Q_{\rm E} = Q_{\rm T} - Q_{\rm D}$$
$$H_{T_2}^{\circ} - H_{T_1}^{\circ} = \frac{Q_{\rm E}M}{m}$$

M et m sont respectivement la masse molaire et la masse de l'échantillon placé dans le calorimètre.

La quantité Q_D est déterminée lors d'une première mesure nommée "blanc", réalisée avec le creuset de mesure vide.

TABLEAU 7

Variation de l'enthalpie en fonction de la température du mélange à 19,95% molaire en $n-C_{24}$

<u></u>	$H^{\circ}(x,T)$	Phase	T	$H^{\circ}(x,T)$	Phase
(K)	$(J mol^{-1})$	stable	(K)	$(J \text{ mol}^{-1})$	stable
		↑			
260,0	0		305,0	40188	β
265,0	2342		310,0	47706	
270,0	7880	1	315,0	55688	ŖI
280,0	10426		317,0	69162	α-RII
285,0	13666		317,1 ª		
290,0	17062		317,5	94013	
295,0	20515		318,0	105440	
300,0	24545	1	318,3 ^a		
300,5	25146	β' 1	318,5	105816	Î
300,8 ª		ļ	320,0	106929	Į
301,0	26368		325,0	110746	Ĺ
301,5	30412		329,9	114778	
302,0	36299		334,9	118676	
302,1 ^a			339,9	122242	t
302,5	36983	<u> </u>			

Nous avons étalonné préalablement le calorimètre à l'aide d'alumine fournie par le National Bureau of Standards [7]. Des mesures de variations d'enthalpie en fonction de la température ont ensuite été réalisées sur les neuf *n*-paraffines pures de l'octadécane $(n-C_{18})$ à l'hexacosane $(n-C_{26})$ [8]. Pour ces deux composés extrêmes de la série, nous avons pu comparer nos

Fig. 3. Diagramme de phases du système docosane-tétracosane à partir des points expérimentaux obtenus.

résultats avec ceux de la littérature [9,10]: l'écart relatif est inférieur à un pourcent pour une variation d'enthalpie mesurée entre 260 K et 350 K.

Conditions opératoires des mesures enthalpiques

Les mélanges binaires sont préparés à partir du docosane et du tétracosane purs provenant de la Société Aldrich.

Les mélanges docosane-tétracosane sont préparés au sein même du creuset en introduisant successivement les deux masses de paraffine.

Le creuset serti est placé 24 h en étuve régulée à 120°C. Plusieurs agitations sont effectuées au cours des 24 h.

Les titres molaires, les masses respectives en docosane et tétracosane et les masses molaires moyennes des différents mélanges effectués sont regroupés dans le Tableau 1.

TABLEAU 8

Variation de l'enthalpie en fonction de la température du mélange à 24,97% molaire en $n-C_{24}$

T	$H^{\circ}(x,T)$	Phase	T	$H^{\circ}(x,T)$	Phase
(K)	$(J \text{ mol}^{-1})$	stable	(K)	$(J \text{ mol}^{-1})$	stable
		Ť			 Υ
260,0	0		310,0	48187	ŖI
265,0	2652		313,5	53246	
270,0	5285		314,0 ^b	53978	
275,0	8341	$\beta'1 + \beta''$	314,5	54670	Î
280,0	11543		315,0	55395	
285,0	14685		315,5	56252	α-ŖII
290,0	17766		316,0	57298	
295,0	21193		316,5	58724	
300,0	25356		317,0	61103	
300,5	25895		317,3 ^a		
300,9 ª		j_	317,5	66823	
301,0	26836	**************************************	318,0	86163	
301,5	29117		318,5	106381	
302,0	35790		318,6 ^a		
302,3 ª			319,0	106779	Ť
302,5	37345	1	320,0	107486	1
303,0	37978		325,0	111386	Ļ
303,5	38645	β	329,9	115148	
304,0	39314		334,9	118841	
304,5 ^b	39989		339,9	122882	Ļ
305,0	40677	1			

^a Températures de début et de fin de transition et de fusion obtenues à partir du tracé $H^{\circ}(x, T)$ en fonction de T.

^b Températures respectives des transitions $\beta \rightarrow RI$ et $RI \rightarrow \alpha$ -RII obtenues à partir du tracé C_p en fonction de T.

TABI	.EA	JU	9
		~~	-

Variation de l'enthalpie en fonction de la température du mélange à 28,08% molaire en $n-C_{24}$

T	$H^{\circ}(x,T)$	Phase	T	$H^{\circ}(x,T)$	Phase
(K)	$(J \text{ mol}^{-1})$	stable	(K)	(J mol ⁻¹)	stable
		^			1
260,0	0	ļ	310,0	45048	
265,0	2138		313,5	50240	RI
270,0	4573		314,0 ^b	51041	
275,0	7276	$\beta'' + \beta' 1$	314,5	51750	1
280,0	10065		315,0	52533	1
285,0	12683	ļ	315,5	53405	α-ŘII
290,0	15562		316,0	54517	
295,0	18648		316,5	56030	
300,0	22597		317,0	58447	
300,5	23263		317,1 ^a		
300,8 ª		Į	317,5	63377	
301,0	24507		318,0	76662	
301,5	26796		318,5	102008	
302,0	31575		318,8 ª		
302,5 ª	34765		319,0	103519	Î
303,0	35441		319,5	103888	
303,5	36035		320,0	104257	1
304,0	36678	β	325,0	107923	L
304,5	37323	Ì	329,9	111629	
305,0	37947	[334,9	115331	
305,5 ^b	38547	L	339,9	119099	ţ
306,0	39169	1	,		

^b Températures respectives des transitions $\beta \rightarrow RI$ et $RI \rightarrow \alpha$ -RII obtenues à partir du tracé C_p en fonction de T.

Le domaine de température exploré pour chaque mélange s'étend de 260 K à 340 K: l'origine des enthalpies est prise arbitrairement à 260 K. Les mesures sont réalisées en deux étapes:

(1) dans un premier temps, à l'état solide de 260 K jusqu'à des températures légèrement inférieures aux températures de transition, l'amplitude des sauts ΔT est de 1 K avec une vitesse de montée en température de 20 K h⁻¹;

(2) dans un deuxième temps, de 290 K à 340 K avec des sauts de 0,5 K et une vitesse de 10 K h^{-1} pour déterminer avec plus de précision les températures et les variations d'enthalpie des changements de phase successifs.

Variation de l'enthalpie en fonction de la température du mélange à 35,06% molaire en $n-C_{24}$

T	$H^{\circ}(x,T)$	Phase	T	$H^{\circ}(x,T)$	Phase
(K)	$(J \text{ mol}^{-1})$	stable	(K)	$(J \text{ mol}^{-1})$	stable
		↑			↑
260,0	0		306,0	40750	
265,0	2420		310,0	46830	ŖI
270,0	4920		313,5	51916	
275,0	7791	β"	314,0 ^ь	52626	
280,0	10860		314,5	53323	Î
285,0	13708		315,0	53989	
290,0	16848		315,5	54756	α -RII
295,0	20265		316,0	55660	
300,0	24399		316,5	56799	
300,5	24978		317,0	58409	
300,8 ª		ļ	317,5 °	61154	
301,0	25937		318,0	67150	
301,5	27281		318,5	82592	
302,0	29490		319,0	105350	
302,5 a	34026		319,5	106125	
303,0	36901		319,6 ª		
303,5	37528	$\dot{\boldsymbol{\beta}}$	320,0	106480	Ţ
304,0	38178	[324,9	110112	
304,5	38813	1	329,9	113809	L
305,0	39450		334,9	117107	
305,5 ^ь	40082	ļ	339,9	120331	ţ

^a Températures de début et de fin de transition et de fusion obtenues à partir du tracé $H^{\circ}(x, T)$ en fonction de T.

^b Températures respectives des transitions $\beta \rightarrow RI$ et $RI \rightarrow \alpha$ -RII obtenues à partir du tracé C_p en fonction de T.

Une zone de recouvrement de 15 degrés entre les deux étapes de mesures permet de voir que les valeurs ne sont pas modifiées de manière très sensible.

RESULTATS EXPERIMENTAUX

Les résultats expérimentaux des variations d'enthalpie en fonction de la température des dix huit mélanges étudiés apparaissent sur les Tableaux 2-19.

La représentation graphique de la variation d'enthalpie en fonction de la température pour chacun des mélanges permet de déterminer les températures respectives de début et de fin de transformation.

TIMPLINO II	TA	BL	Æ	Αl	J	1	1
-------------	----	----	---	----	---	---	---

Variation de l'enthalpie en fonction de la température du mélange à 38,02% molaire en $n-C_{24}$

T	$H^{\circ}(x,T)$	Phase	<i>T</i>	$H^{\circ}(x,T)$	Phase	
(K)	$(J \text{ mol}^{-1})$	stable	(K)	$(J mol^{-1})$	stable	
• < • •	_	Ť	som s h			
260,0	0		307,0 5	43155	k	
265,0	2659		307,5	43882	Î	
270,0	5519	1	310,0	47709	ŖI	
275,0	8367	β"	312,0	50846		
280,0	11418		312,5 ^b	51560	i	
285,0	14623		313,0	52237	Î	
290,0	17868		313,5	52924		
295,0	21219		314,0	53647		
300,0	25144		314,5	54327	α-RII	
300,5	25663		315,0	55004		
301,0	26481		315,5	55789		
301,5 ^a	27706	L	316,0	56655		
302,0	29898		316,5	57691		
302,5	34088		317,0	59142		
303,0	37225		317,5	61331		
303,1 ^a			318,0	65882		
303,5	38448	1	318,1 ª			
304,0	39124		320,0 ª	107349		
304,5	39777		324,9	111176	Ĺ	
305,0	40441	β	329,9	114988		
305,5	41114	. i	334,9	118885	1	
306,0	41799	1	339.9	122792	Ļ	
306.5	42475		,			

^b Températures respectives des transitions $\beta \rightarrow RI$ et $RI \rightarrow \alpha$ -RII obtenues à partir du tracé C_p en fonction de T.

Fig. 4. Diagramme de phases du système binaire docosane-tétracosane.

<u>T</u>	$H^{\circ}(x,T)$	Phase	T	$H^{\circ}(x,T)$	Phase
(K)	$(J \text{ mol}^{-1})$	stable	(K)	$(J \text{ mol}^{-1})$	stable
		Ť			↑
260,0	0		303,5	39448	
265,0	2641		304,0	40109	β
270,0	5127		304,5	40757	
275,0	7841		305,0	41393	
280,0	10862	β''	310,0	48753	ŔI
285,0	14059		315,0	56117	
290,0	17710	ł	319,0	106260	
295,0	21671		318,0	66892	a-RII
300,0	25840		318,5 ^a	80222	
300,5	26337		319,3 ^a		
301,0	27231		319,5	109421	
301,1 ª		Ţ	320,0	109799	
301,5	28719	<u></u>	325,0	113714	L
302,0	31035		329,9	117420	
302,5	34354		334,9	121137	
303,0	37808		339,9	125033	Ļ
303,3 ^a					

Variation de l'enthalpie en fonction de la température du mélange à 40,04% molaire en $n-C_{24}$

TABLEAU 13

Variation de l'enthalpie en fonction de la température du mélange à 41,95% molaire en $n-C_{24}$

T	$H^{\circ}(x,T)$	Phase	T	$H^{\circ}(x, T)$	Phase
(K)	$(J mol^{-1})$	stable	(K)	$(J mol^{-1})$	stable
		↑			
260,0	0		303,0	35522	
265,0	2458	β″	303,3 ^a		
270,0	5263	l	303,5	38258	1
275,0	8140		305	40486	β
280,0	11214		310,0	48053	Ŕ
285,0	14232]	315,0	55386	
290,0	17887		318,0	65591	α-RII
294,0	20806		318,3 ª		
294,4 ^ь		l	318,5	75327	
294,5	21172	1	319,0	97577	
295,0	21543	$\beta'' + \beta' 2$	319,5	109075	
300,5	26225		319,6 ª		
300,8 a		l	320,0	109490	Ţ
301,0	27134	*	325,0	113494	L
301,5	28392		329,9	117473	
302,0	30247		334,9	121493	
302,5	32689		339,9	125412	ţ

^a Températures de début et de fin de transition et de fusion obtenues à partir du tracé $H^{\circ}(x, T)$ en fonction de T.

^b Températures correspondant aux limites entre les domaines de phases determinées par analyse radiocristallographique.

$H^{\circ}(x,T)$	Phase	<u>T</u>	$H^{\circ}(x,T)$	Phase
$(J \text{ mol}^{-1})$	stable	(K)	$(J \text{ mol}^{-1})$	stable
	î			
0		304,2 ª		
3063		304,5	39900	î
5905		305,0	40742	β
9035	$\beta'' + \beta'^2$	310,0	48005	ŔI
11946		315,0	55203	
14992		318,0	60767	α -RII
18259		318,3 ^a		
21678		318,5	63852	
25680		319,0	72537	
27248		319,5 ª	94335	
	l	320,0	109238	
28215		325,0	112850	
29782		329,9	116658	L
32258		334,9	120247	
35207		339,9	123949	t
37773				
	$H^{\circ}(x, T)$ (J mol ⁻¹) 0 3063 5905 9035 11946 14992 18259 21678 25680 27248 28215 29782 32258 35207 37773	$H^{\circ}(x, T)$ Phase (J mol ⁻¹) Phase stable 0 1 3063 1 9035 $\beta'' + \beta'2$ 11946 1 14992 1 18259 21678 25680 27248 28215 29782 32258 35207 37773 $\beta'' + \beta' = \beta' = \beta' = \beta' = \beta' = \beta' = \beta' =$	$H^{\circ}(x, T)$ (J mol ⁻¹)Phase stableT (K)0 $304,2^{a}$ 3063 9035 $304,5^{a}$ $305,0$ 9035 $\beta'' + \beta' 2$ $310,0$ $310,0$ 11946 14992 $318,0$ 18259 $318,0$ $318,5$ 25680 27248 $318,5^{a}$ $320,0$ 28215 $325,0$ $325,0$ 28215 $325,0$ $325,0$ 29782 32258 35207 37773 $339,9$	$H^{\circ}(x, T)$ $(J mol^{-1})$ Phase stable T (K) $H^{\circ}(x, T)$ $(J mol^{-1})$ 0 $304,2^{a}$ 3063 5905 9035 $304,5$ $305,0$ 39900 40742 9035 $\beta'' + \beta'2$ $310,0$ $306,0$ 48005 11946 11946 14992 21678 25680 $318,0$ $318,5$ $318,5$ $318,5$ $318,5$ $318,5$ $318,5$ $319,0$ 72537 $320,0$ 109238 $320,0$ 112850 28215 29782 32258 32258 32258 32257 $314,9$ $329,9$ 116658 $339,9$

Variation de l'enthalpie en fonction de la température du mélange à 48,00% molaire en $n-C_{24}$

^a Températures de début et de fin de transition et de fusion obtenues à partir du tracé $H^{\circ}(x, T)$ en fonction de T.

Le thermogramme de la Fig. 2 donne un exemple de cette évolution pour un mélange à 38,02% molaire en tétracosane.

Par analyse radiocristallographique, des mélanges $(n-C_{22}-n-C_{24})$, Hasnaoui et al. mettent en évidence à 20°C, outre les deux solutions solides primaires $\beta T_1 (n-C_{22})$ et $\beta T_2 (n-C_{24})$ tricliniques, trois phases intermédiaires orthorhombiques notées β'_1 , β'' et β'_2 [4]. Celui-ci étudie également l'évolution de ces trois phases en fonction de la température et détermine les transitions à l'état solide suivantes

$$\beta'' \longrightarrow \beta' \longrightarrow \beta \longrightarrow$$
 Rotatoire I $\longrightarrow \alpha$ -Rotatoire II \longrightarrow fusion [1,4]
 \downarrow orthorhombiques \longrightarrow rhomboédrique \rightarrow
[11]

Remarque

Les chaînes moléculaires se mettent progressivement en rotation autour de leur axe dans les structures des phases Rotatoires I (orthorhombiques) et α -Rotatoires II (rhomboédriques).

Variation de l'enthalpie en fonction de la température du mélange à 59,83% molaire en $n-C_{24}$

\overline{T}	$\frac{H^{\circ}(x,T)}{(1-x)^{-1}}$	Phase	T (K)	$\frac{H^{\circ}(x,T)}{(1 \text{ ma}^{1-1})}$	Phase
(N)		stable	(K)		
		Î			4
260,0	0		308,5 ^ь		*
265,0	2847		309,0	45026	
270,0	5348	$\beta'' + \beta' 2$	310,0	46640	
275,0	8160		313,5	52249	
280,0	11447		314,0 ^b	52995	<u>*</u>
285,0	14860	1	314,5	53649	
290,0	18196		315,0	54315	<i>u</i> -KII
295.0	21766		318,0	5875 7	
300.0	25566		319,2 °		``
300.6 °		*	318,5	60037	
301.0	26483	β'2	319,0	62343	
302.0	27529		319,5	68225	
302,5 ª			320,0	84975	
303.0	29043		320,5	109858	
304,0	31076		320,8 ª		
305.0	33926		321,0	111560	
306.0	38103		325,0	114903	I T
307.0	42065		329,9	119091	ĭ
307.5 ª		1	334,9	123057	
308,0	43503	ß	339,9	127007	*

^a Températures de début et de fin de transition et de fusion obtenues à partir du tracé $H^{\circ}(x, T)$ en fonction de T.

^b Températures respectives des transitions $\beta \rightarrow RI$ et $RI \rightarrow \alpha$ -RII obtenues à partir du tracé C_n en fonction de T.

^c Températures correspondant aux limites entre les domaines de phases determinées par analyse radiocristallographique.

Nous complétons cette étude radiocristallographique en fonction de la température, en étudiant 18 mélanges binaires docosane-tétracosane [12].

Ces analyses permettent l'interprétation structurale des accidents enthalpiques observés sur les thermogrammes et de déterminer ainsi, conjointement, les températures de transformations.

L'étude précédente, réalisées sur les *n*-paraffines pures [8], donne en particulier, pour chacun des composés purs docosane $n-C_{22}$ et tétracosane $n-C_{24}$ les températures de transformation suivantes

 β T(triclinique) $\longrightarrow \alpha$ -RII(rhomboédrique) \longrightarrow fusion

$n - C_{22}$	316.2 K	316.9 K
<i>n</i> -C ₂₄	321.1 K	323.5 K

TA	BL	E.	41	J	16	5

Variation de l'enthalpie en fonction de la température du mélange à 74,97% molaire en $n-C_{24}$

T	$H^{\circ}(x,T)$	Phase	T	$H^{\circ}(x,T)$	Phase
(K)	$(J \text{ mol}^{-1})$	stable	(K)	$(J \text{ mol}^{-1})$	stable
		1			Į
260,0	0		311,5	50275	
265,0	2617		312,0	51164	Ĺ
270,0	5445		312,5 ^b	52072	Į
275,0	7930		313,0	53004	1
280,0	10769	$\beta 2$	315,0	56438	RI
285,0	13937	(320,0	65263	
290,0	17253		320,5	68856	α-ŘII
295,0	21014	{	320,9 ª		↓
300,0	25020		321,0	79851	
305,0	29654		321,5	107062	
307,0	33111		321,8 ^a		
307,3 ^a		ļ	322,0	116642	Ţ
307,5	34264	X	325.0	119184	L
308.0	35836		329.9	123301	
308,5	37872		334,9	127439	ſ
309,0	40457		339.9	131707	Ļ
309,5 ª	43609		- ·)-		
310,0	46620	1			
310.5	48113	B			
311,0	49375	Ĩ			

^b Température de transition $\beta \rightarrow RI$ obtenue à partir du tracé C_p en fonction de T.

CONCLUSION

Nous avons mesuré les variations d'enthalpie entre 260 K et 340 K de 18 mélanges binaires docosane-tétracosane.

Les études radiocristallographiques menées conjointement sur les mélanges nous ont permis de donner une interprétation structurale des accidents enthalpiques observés en calorimétrie. La compilation des résultats, obtenus conjointement par ces deux techniques nous permet de représenter le diagramme de phases du système binaire docosane-tétracosane (Figs. 3 and 4) en retenant, pour les mélanges, de structure β'' à basse température une décomposition péritectoïde pour passer au domaine β sans transition par la phase β' comme l'a représenté Hasnaoui [1].

Variation de l'enthalpie en fonction de la température du mélange à 80,06% molaire en $n-C_{24}$

T	$H^{\circ}(x,T)$	Phase	T	$H^{\circ}(x,T)$	Phase
(K)	$(J \text{ mol}^{-1})$	stable	(K)	$(J \text{ mol}^{-1})$	stable
		↑			
260,0	0		310,5	43621	
265,0	2784		311,0	46621	
270,0	5745		311,2 ^a		
275,0	8656	$\beta'2 + \beta T2$	311,5	49565	
280,0	11626		315,0	56720	β
285,0	14794		320,0	64085	ŔI
290,0	18133		320,5	65597	
295,0	21546	1	320,8 a		<i>a</i> -KII
300,0	24897		321,0	68962	
305,0	28955		321,5	80928	
307,0	30885	[322,0	111940	
307,3 ^a			322,8 ª		
307,5	31513		322,5	117162	Î
308,0	32342		325,0	119175	
308,5	33535		329,9	123038	Ļ
309,0	35271		334,9	127002	
309,5	37873		339,9	130707	ţ
310,0	40765				

^a Températures de début et de fin de transition et de fusion obtenues à partir du tracé $H^{\circ}(x, T)$ en fonction de T.

TABLEAU 18

Variation de l'enthalpie en fonction de la température du mélange à 89,79% molaire en $n-C_{24}$

\overline{T}	$H^{\circ}(x,T)$	Phase	T	$H^{\circ}(x,T)$	Phase
(K)	$(J \text{ mol}^{-1})$	stable	(K)	$(J mol^{-1})$	stable
		↑			
260,0	0	ł	316,0	54972	
265,0	2314	1	316,5 ª	58888	
270,0	4760		317,0	61323	Â
275,0	7366		320,0	66320	F
280,0	10188	$\beta'2 + \beta T2$	322,0	72722	ŖI
285,0	13608	i l'	322,3 ª		α-RII
290,0	16892		322,5	92432	*_
295,0	19971		323,0	123172	
300,0	23183	{	323,1 ^a		
305,0	26571		323,5	123706	<u>-</u>
310,0	30356	r	325,0	124900	I.
313,0	36383	j	329,9	128713	Ĩ
313,5 °	38131	Ļ	334,9	132703	
314,0	40297		339,9	136411	
314,5	42979				v
315,0	46410				
315,5	50534				

Variation de l'enthalpie en fonction de la tempéature du mélange à 94,91% molaire en $n-C_{24}$

T	$H^{\circ}(x,T)$	Phase	T	$H^{\circ}(x,T)$	Phase
(K)	$(J \text{ mol}^{-1})$	stable	(K)	$(J \text{ mol}^{-1})$	stable
		÷			
260,0	0		318,9 ^a		
265,0	2622		319,0	62576	1
270,0	5330		319,5	66972	β
275,0	8153		320,0	68161	
280,0	10853	βΤ2	320,5	68833	ŔI
285,0	13794	, i	322,5	71939	α-ĖII
290,0	16706	{	322,9 ª		
295,0	19919		323,0	74376	
300,0	23290		323,5	103639	
305,0	25927		323,6 ^a		·
310,0	29512		324,0	126322	Î
315,0	33623		324,5	126735	
317,5	39720		325,0	127131	Ļ
317,8 ª			329,9	131313	
318,0	45104		334,9	135239	
318,5	53174		339,9	138995	Ļ

^a Températures de début et de fin de transition et de fusion obtenues à partir du tracé $H^{\circ}(x, T)$ en fonction de T.

BIBLIOGRAPHIE

- 1 N. Hasnaoui, Thèse Ingénieur Docteur, I.N.P.L.-E.N.S.I.C., Nancy, 1987.
- 2 P.M. Ghogomu, Thèse de Docteur ès Sciences, I.N.P.L.-E.N.S.I.C., Nancy, 1988.
- 3 P. Barbillon, Mémoire d'Ingénieur C.N.A.M.-E.N.S.I.C., Nancy, 1989.
- 4 N. Hasnaoui, J. Dellacherie, L. Schuffenecker, M. Dirand et D. Balesdent, J. Chim. Phys., 85(2) (1988) 153-160.
- 5 N. Hasnaoui, J. Dellacherie, L. Schuffenecker, M. Dirand et D. Balesdent, J. Chim. Phys., 85(6) (1988) 676-683.
- 6 W.M. Mazee, Symp. Adv. Chem. Thermod. 1958, B35-B48.
- 7 D.A. Ditmars, S. Ishihara, S.S. Chang, G. Bernstein and E.D. West, J. Res. Natl. Bur. Stand., 87(2) (1982) 159-163.
- 8 P. Barbillon, L. Schuffenecker, J. Dellacherie, D. Balesdent et M. Dirand, J. Chim. Phys., 88 (1991) 91-113.
- 9 J.F. Messerly, G.B. Guthrie, S.S. Todd et H.L. Finke, J. Chem. Eng. Data, 12(3) (1967) 338-346.
- 10 R.J.L. Andon et J.F. Martin, J. Chem. Thermodyn., 8 (1976) 1159-1166.
- 11 A. Craievich, J. Doucet et I. Denicolo, Phys. Rev. B, 32(6) (1985).
- 12 Z. Achour, J.B. Bourdet, M. Bouroukba et M. Dirand, J. Chim. Phys., 89 (1992) 707-725.